Desacetylvinblastine Monohydrazide Disrupts Tumor Vessels by Promoting VE-cadherin Internalization

نویسندگان

  • Xueping Lei
  • Minfeng Chen
  • Maohua Huang
  • Xiaobo Li
  • Changzheng Shi
  • Dong Zhang
  • Liangping Luo
  • Youwei Zhang
  • Nan Ma
  • Heru Chen
  • Huafeng Liang
  • Wencai Ye
  • Dongmei Zhang
چکیده

Vinca alkaloids, the well-known tubulin-binding agents, are widely used for the clinical treatment of malignant tumors. However, little attention has been paid to their vascular disrupting effects, and the underlying mechanisms remain largely unknown. This study aims to investigate the vascular disrupting effect and the underlying mechanisms of vinca alkaloids. Methods: The capillary disruption assay and aortic ring assay were performed to evaluate the in vitro vascular disrupting effect of desacetylvinblastine monohydrazide (DAVLBH), a derivate of vinblastine, and the in vivo vascular disrupting effect was assessed on HepG2 xenograft model using magnetic resonance imaging, hematoxylin and eosin staining and immunohistochemistry. Tubulin polymerization, endothelial cell monolayer permeability, western blotting and immunofluorescence assays were performed to explore the underlying mechanisms of DAVLBH-mediated tumor vascular disruption. Results: DAVLBH has potent vascular disrupting activity both in vitro and in vivo. DAVLBH disrupts tumor vessels in a different manner than classical tubulin-targeting VDAs; it inhibits microtubule polymerization, promotes the internalization of vascular endothelial cadherin (VE-cadherin) and inhibits the recycling of internalized VE-cadherin to the cell membrane, thus increasing endothelial cell permeability and ultimately resulting in vascular disruption. DAVLBH-mediated promotion of VE-cadherin internalization and inhibition of internalized VE-cadherin recycling back to the cell membrane are partly dependent on inhibition of microtubule polymerization, and Src activation is involved in DAVLBH-induced VE-cadherin internalization. Conclusions: This study sheds light on the tumor vascular disrupting effect and underlying mechanisms of vinca alkaloids and provides new insight into the molecular mechanism of tubulin-targeting VDAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKCα activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity.

RATIONALE Adherens junctions (AJs) are the primary intercellular junctions in microvessels responsible for endothelial barrier function. Homophilic adhesion of vascular endothelial (VE) cadherin forms AJs, which are stabilized by binding of p120-catenin (p120). p120 dissociation from VE-cadherin results in loss of VE-cadherin homotypic interaction and AJ disassembly; however, the signaling mech...

متن کامل

Integrative Physiology PKC Activation of p120-Catenin Serine 879 Phospho-Switch Disassembles VE-Cadherin Junctions and Disrupts Vascular Integrity

Rationale: Adherens junctions (AJs) are the primary intercellular junctions in microvessels responsible for endothelial barrier function. Homophilic adhesion of vascular endothelial (VE) cadherin forms AJs, which are stabilized by binding of p120-catenin (p120). p120 dissociation from VE-cadherin results in loss of VE-cadherin homotypic interaction and AJ disassembly; however, the signaling mec...

متن کامل

S-nitrosylation regulates VE-cadherin phosphorylation and internalization in microvascular permeability.

The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, β-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of β-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet...

متن کامل

Dynamic Regulation of Vascular Permeability by Vascular Endothelial Cadherin-Mediated Endothelial Cell-Cell Junctions.

Endothelial cells lining blood vessels regulate vascular barrier function, which controls the passage of plasma proteins and circulating cells across the endothelium. In most normal adult tissues, endothelial cells preserve basal vascular permeability at a low level, while they increase permeability in response to inflammation. Therefore, vascular permeability is tightly controlled by a number ...

متن کامل

Vitronectin Increases Vascular Permeability by Promoting VE-Cadherin Internalization at Cell Junctions

BACKGROUND Cross-talk between integrins and cadherins regulates cell function. We tested the hypothesis that vitronectin (VN), a multi-functional adhesion molecule present in the extracellular matrix and plasma, regulates vascular permeability via effects on VE-cadherin, a critical regulator of endothelial cell (EC) adhesion. METHODOLOGY/PRINCIPAL FINDINGS Addition of multimeric VN (mult VN) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018